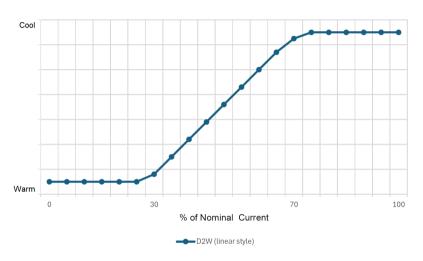

D125R72

Drawing

Technical data

Nominal forward current	350 mA		
Maximum forward current	700 mA		
Ambient temperature range	-25 +45°C		
tc	85°C		
tp rated	65 °C		
Lumen maintenance L80B10	60000 h		
Lumen maintenance L70B50	>72000 h		
Max. working voltage for insulation SELV	<60 V		
Insulation test voltage	500 V		
Classification acc. to IEC 62031	Built-in		
Risk group (IEC 62471)	RG1		
Type of protection	IP00		
Beam characteristic	120 °		

Product details


- Works with LEDiL optics
- Built-in LED module
- Long life-time
- SELV module
- 5 years guarantee

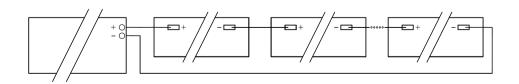
Product code	Photometric code	Useful luminous flux at tp=25 °C	Expected luminous flux at tp rated	Forward current	Min. forward voltage at tp=85 °C	Max. forward voltage at tp=25 °C	Power consumption at tp=25 °C	Efficacy at tp=25 °C	Expected efficacy of at tp rated	Energy classification
D125R72-350-930-918	930/359	880 lm	820 lm	350 mA	18,4 V	19,4 V	6,7 W	131 lm/W	124 lm/W	E
	918/359	-	-	-	-	-	-	-	-	-
D125R72-350-930-922	930/359	880 lm	820 lm	350 mA	18,4 V	19,4 V	6,7 W	131 lm/W	124 lm/W	E
	922/359	-	-	-	-	-	-	-	-	-

Multiplier	tp 25 ℃	tp 45 ℃	tp 65 ℃	tp 85 ℃
Expected luminous flux	1	0,97	0,93	0,90
Efficacy	1	0,98	0,95	0,92

CCT Change dimming curves

Thermal details

Temperature has a great influence on the lifetime of LED products. Exceeding the permissible temperatures can significantly shorten the life of the module or even lead to its destruction. It is necessary to verify compliance with the maximum allowable temperature at the reference point under stable operating conditions. The maximum value should be determined based on the application-specific worst-case conditions. Both reference point temperatures (tc and tp) are measured at the same location.

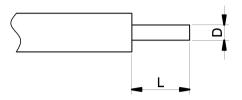

Instalation

The module are not protected against overvoltages, overcurrents, overloads or short-circuit currents. Wrong polarity can damage the module. The module must be powered by a SELV or non-SELV constant current LED driver. Module can be mounted diectly on earthed metal parts of luminaire only when max working voltage for insulation is highier than max. output voltage of LED driver (also againt earth). Otherwise additional insulation between LED module and heat sink is required. At voltages > 60 V an additional protection against direct touch (test finger) to the light emitting side of the module has to be guaranteed. This is typically achieved by means of a non removable light distributor over the module or by a suitable luminaire construction.

Risk of sulfurization

The LED uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (Cl) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, the LED Modules should not be usedand stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Wiring example



D125R72

Wiring type and cross section

The wiring can be in stranded wires or solid with a cross section of 0.2 to 0.75mm^2 .

D - wire cross section	Min	Max	
	0,2mm²	0,75mm²	
L - strip lenght	Min	Max	
	7,5mm	9,5mm	

Photometric code

1 digit	2+3 digit	4 digit	5 digit	6 digit
CRI				Luminous flux after 25% of the lifetime (max. 6000 h)
7 70-79	Colour temperature MacA	MacAdam initial	Mac Adam after 25 % of the	7 ≥ 70
8 80-89	in Kelvin x 100	n Kelvin x 100	lifetime (max. 6000 h)	8 ≥ 80
9 ≥90				9 ≥ 90

